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Abstract

The possibility of absorption of linear elastic system forced oscillations by means of an essentially
nonlinear absorber (snap-through truss), which is attached to the linear subsystem, is analyzed. The
simplest mass–spring linear subsystem is chosen to study the problem of forced oscillations absorption. The
combination of the nonlinear normal vibrations modes method, the Rauscher approach and the asymptotic
analysis is used to study forced oscillations of the two-dof system. The absorption vibrations mode in the
form of nonlinear normal vibrations mode with small oscillations amplitudes of the linear subsystem and
large amplitudes of the snap-through truss is studied. It is shown that this mode is stable over the wide
range of the excitation frequency.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many scientific publications contain description and analysis of different devices for passive
and active absorption of mechanical oscillations. The theory of linear passive absorbers is
considered in Ref. [1]. The basis of a passive absorption is energy pumping from a main elastic
subsystem into an absorber. Note that the energy pumping in nonlinear systems is considered in
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Ref. [2]. Energy pumping between vibrations modes of geometrically nonlinear cylindrical shells is
treated in Ref. [3].
Many efforts have been made to study vibrations absorption. A beam as an absorber, which is

attached to a linear mass–spring system, is considered in Ref. [4]. The pendulum torsional
vibration absorber is studied by Shaw and Wiggins [5]. They use the Melnikov method to study
chaotic vibrations. If the nonlinear absorber is attached to the main linear subsystem, the unstable
periodic oscillations take place close to the combination resonance and stable almost periodic
stable oscillations occur [6]. Natsiavas [7] suggested to use a system with a nonlinear spring to
absorb the forced oscillations of the Duffing system. The mass–spring nonlinear system is used to
absorb oscillations of a self-excited subsystem [8]. Lee and Shaw [9] considered a quenching
of torsional oscillations of the four-stoke, four-cylinder internal combustion engine by the
centrifugal pendulum absorber. Haddow and Shaw [10] experimentally studied the rotating
machinery with the centrifugal pendulum absorber, which is used in aircrafts and automobiles.
The essentially nonlinear spring is considered as an absorber of free oscillations of the discrete
mechanical system in Ref. [11]. The method of nonlinear integral equations is used to analyze this
discrete system. A semi-infinite linear chain with an essentially nonlinear absorber is considered in
Ref. [12]. A single-dof main elastic system with the absorber, which consists of a set of pendulums,
is treated in Ref. [13].
Impact systems are used to absorb oscillations of discrete and continuous mechanical systems

[14,15]. Aoki and Watanabe [16] studied the impact absorber (the small mass hitting on stops).
Shaw and Shaw [17] suggested a reverse pendulum hitting on stops to absorb oscillations of a
single-dof subsystem.
In the present paper a simple model of an elastic system (a single-dof mass–spring oscillator)

under the time-periodic force is used to study a possibility of absorption by means of the snap-
through truss. The mass and stiffness of the absorber are smaller, than the corresponding
parameters of the main linear subsystem, which is the principal design condition. The vibration
absorption mode with significant vibrations amplitudes of the snap-through truss and small
amplitudes of the main linear subsystem is treated. The combination of the nonlinear normal
vibrations mode method, the Rauscher approach and asymptotic analysis is used to study
vibration absorption mode.
2. Equations of motions

Fig. 1 shows the system under consideration. The motions under the action of time-periodic
force F cosOt are defined by two generalized coordinates U , W . These coordinates W , U are
counted off from the stable equilibrium position. The equations of motions are derived with
respect to the dimensionless variables and parameters:

ðu;wÞ ¼ ðU ;W ÞL�1; t ¼ o0t; o2
0 ¼

~c1
M
; o ¼

O
o0
; g ¼

~c

~c1
; m ¼

m

M
; ef ¼

F

~c1L
ðe51Þ,

(1)

where M, m are masses of the main linear subsystem and the snap-through absorber; L; ~c are
length and stiffness of the spring; ðu;wÞ are the dimensionless generalized coordinates; t is the
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Fig. 1. The mechanical system under consideration.
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dimensionless time; o2
0 is the partial frequency of the linear subsystem; o is the dimensionless

frequency of the external excitation. The equations of system motions are

€uþ b1 _uþ u� gðc� uÞ 1�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ wÞ2 þ ðc� uÞ2
q

0
B@

1
CA ¼ ef cosðotÞ,

m €wþ b2 _wþ gðsþ wÞ 2�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþ wÞ2 þ c2
q �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ wÞ2 þ ðc� uÞ2

q
0
B@

1
CA ¼ 0, (2)

where c ¼ cosj; s ¼ sin j. Angle j defines the stable equilibrium position of the snap-through
absorber (Fig. 1). We assume, that damping forces b1 _u and b2 _w act on both masses of the system.
However, damping is not taken into account in the analytical analysis, which is presented below.
The damping forces are considered only in the numerical simulations of system (2).
Note that in the previous paper of the authors [18] it is analyzed the snap-through motions

which exist without any external force. The snap-through forced oscillations take place at an
arbitrary value of f, which is confirmed by the numerical simulations. Different kinds of forced
oscillations of system (2) can be observed besides the snap-through motions, which are considered
here. The motions, when the snap-through truss performs small oscillations close to the stable
equilibrium position, are considered in the previous paper of the authors [19].
Note that the snap-through truss is parametrically excited by the main mass motions (Fig. 1). In

this case the complex bifurcation behavior of the absorber and chaotic vibrations could take
place. The first results devoted to this subject are published in Ref. [20].
As the stiffness and mass of the snap-through absorber are significantly smaller than the

corresponding parameters of the main linear subsystem, we assume that

g ¼ �ḡ; m ¼ �m̄. (3)

New generalized coordinates w1, u1, which are counted off from the unstable equilibrium position,
are introduced in the following form:

w1 ¼ wþ s; u1 ¼ u� u�, (4)



ARTICLE IN PRESS

K.V. Avramov, Y.V. Mikhlin / Journal of Sound and Vibration 290 (2006) 705–722708
where u� ¼ gðc� 1Þ=ð1þ gÞ. System (2) is rewritten with respect to ðu1;w1Þ and the Taylor-series
expansions are performed, retaining the terms up to the third order. As a result the following
system of the differential equations is derived:

€u1 þ u1 ¼ eḡf�u1 þ
15
4

cs2u21 þ cð1
2
þ 3

4
s2Þw2

1 þ ð1�
9
4

s2Þu1w
2
1 þ ð

5
2
� 15

4
s2Þu3

1g þ ef cosot, (5a)

€w1 þ p2w1½�s2ð1þ 3
4

s2Þ � cð1þ 3
2

s2Þu1 � ð1�
9
4

s2Þu2
1 þ ð1þ

3
2

s2Þw2
1� ¼ 0. (5b)

Note that the corresponding unperturbed (e ¼ 0) equations of system (5) are essentially
nonlinear.
The motions of the main linear subsystem auto parametrically excite the snap-through

absorber. But the motions of this system may excite the absorber directly, if the absorber
dynamics is described by two general coordinates, that is the horizontal oscillations of absorber
are taken into account too. In this case three-dof system has to be considered.
3. Vibrations absorption mode

The vibrations absorption mode is considered in the form of nonlinear normal vibrations mode
(NNM) [21,22]. These motions have significant oscillations amplitudes of the snap-through
absorber and small amplitudes of the main linear subsystem. The next estimation of the vibration
absorption mode follows from Eqs. (5): u1 ¼ OðeÞ;w1 ¼ Oð1Þ. Therefore, the corresponding zero
approximation (� ¼ 0) can be presented as u1 ¼ 0;w1 ¼ Oð1Þ. Then variable w1 of the zero
approximation satisfies the differential equation:

€w1 þ p2w1½�s2ð1þ 3
4

s2Þ þ ð1þ 3
2

s2Þw2
1� ¼ 0. (6)

Eq. (6) describes two kinds of periodic motions, which are separated by homoclinic orbits (Fig. 2).
Periodic orbit L1 corresponds to a snap-through motion. As system (6) is conservative, solutions
of this equation can be derived using the energy integral and the separation of variables. Details of
Fig. 2. The qualitative phase plane of Eq. (6).
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such equations analysis can be found in Ref. [23]. The solutions of Eq. (6) are:

pffiffiffi
2
p 1þ

3

4
s2

� �
t ¼ �

Z w1

W
ðmaxÞ

1

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW
ðmax Þ2

1 � w2Þðw2 þ b2Þ

q , (7)

W
ðmax Þ2

1 ¼ s2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þ 4Hp�2

q� �
ð1� 3

4
s2Þ,

b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þ 4Hp�2

q
� s2

� �
ð1� 3

4
s2Þ,

where H is a total energy of oscillator (6); W
ðmaxÞ
1 is the oscillations amplitude. Solution (7) can be

rewritten as

pt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
s2

q
ðs4 þ 4Hp�2Þ1=4

F ðj; kÞ, (8)

where Fðj; kÞ is the elliptic integral; k is a modulus of the elliptic integral. The following equation
connects k to W

ðmaxÞ
1 and H:

k2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þ 4Hp�2

p
þ s2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þ 4Hp�2

p ¼
1

2ð1� s2W
ðmax Þ�2

1 Þ
. (9)

Eqs. (9) are derived from Eq. (7). As motions of the snap-through absorber are considered outside
the homoclinic trajectory, then W

ðmaxÞ
1 4s

ffiffiffi
2
p

and k 2 ½1; 1ffiffi
2
p �.

Solutions of Eq. (6) can be presented as

w1 ¼W
ðmaxÞ
1 cosj. (10)

Using the principal concept of Rauscher method [21,22], the zero approximation of solutions (8)
are substituted into system (5). Precisely, solution (8) is substituted only into term ef cosot:

�fgðjÞ ¼ �fgðw1Þ ¼ �f cos
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3

4
s2Þð2k2

� 1Þ
q

ps
Fðj; kÞ

0
@

1
A. (11)

Frequency o is extracted from the periodicity condition gðjÞ ¼ gðjþ 2pÞ and Eq. (11):

o ¼
psp

2KðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3

4
s2Þð2k2

� 1Þ
q , (12)

where KðkÞ is the complete elliptic integral of the first kind. Then excitation (11) can be presented as

�fgðjÞ ¼ �f cos
p

2KðkÞ
Fðj; kÞ

� �
. (13)

Moreover, the equation: gðpþ jÞ ¼ �gðjÞ is satisfied. Therefore, we approximate the function
gðjÞ by two harmonics of the Fourier series:

gðjÞ � A1 cosjþ A3 cos 3jþ � � � , (14)
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where

An ¼
4KðkÞ

p2

Z p

0

cosc cos nam
2KðkÞ

p
c

� �� �
dn

2KðkÞ

p
c

� �
dc; n ¼ 1; 3; am

2KðkÞ

p
c

� �

is the Jacobi amplitude; dnð2Kc=pÞ is the Jacobi function. Using the Fourier series for snð2Kc=pÞ
[24], we derived:

A1 ¼
2

p

Z p

0

sincsn
2Kc
p

� �
dc ¼

p
kKðkÞsnðpK 0=2KÞ

, (15)

A3 ¼
2

p

Z p

0

sn
2Kc
p

� �
sincdc�

8

3p

Z p

0

sn3
2Kc
p

� �
sincdc. (16)

Using the Fourier series for sn3ð2Kc=pÞ, which is presented in Appendix 2, the following equation
is obtained:

A3 ¼
p½2K2ðk2

� 2Þ þ p2�

6k3K3snðpK 0=2KÞ
. (17)

Thus amplitudes of harmonics A1;A3 are obtained analytically.
Expression (11) is substituted into Eq. (5). Then the autonomous dynamical system is derived:

€u1 þ u1 ¼ �ḡf�u1 þ
15
4

cs2u2
1 þ cð1

2
þ 3

4
s2Þw2

1 þ ð1�
9
4

s2Þu1w
2
1 þ ð

5
2
� 15

4
s2Þu31 þ fgðw1Þg, (18a)

€w1 þ p2w1½�s2ð1þ 3
4 s2Þ � cð1þ 3

2 s2Þu1 � ð1�
9
4 s2Þu2

1 þ ð1þ
3
2 s2Þw2

1� ¼ 0. (18b)

We consider the absorption motions of system (18) in the form of nonlinear normal vibrations
mode u1ðw1Þ. Fig. 3 shows a qualitative trajectory of such motion. The NNM can be presented
Fig. 3. Qualitative representation of the nonlinear normal mode in a configuration space.
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as [21,22]

u1 ¼ e ~uðw1Þ ¼ eða0 þ a1w1 þ a2w
2
1 þ � � �Þ, (19)

where a0; a1; a2; . . . are unknown constants. Using relation

d2u1

dt2
¼

d2u1

dw2
1

_w2
1 þ

du1

dw1

€w1,

Eq. (18a) can be presented as

u001 _w
2
1 � p2½�s2ð1þ 3

4
s2Þw1 � cð1þ 3

2
s2Þw1u1 � ð1�

9
4

s2Þu21w1 þ ð1þ
3
2

s2Þw3
1�u
0
1 þ u1

¼ �ḡff�u1 þ
15
4

cs2u21 þ cð1
2
þ 3

4
s2gÞw2

1 þ ð1�
9
4

s2Þu1w
2
1 þ ð

5
2
� 15

4
s2Þu3

1g þ �fgðw1Þ, ð20Þ

where ðÞ0 ¼ dðÞ=dw1. The following equation is obtained from Eq. (18b):

_w2
1

2
þ p2

Z w1

W
ðmaxÞ

1

½�s2ð1þ 3
4

s2Þw1 þ ð1þ
3
2

s2Þw3
1�dw1

þ p2
Z w1

W
ðmaxÞ

1

w1½�cð1þ 3
2

s2Þu1 � ð1�
9
4

s2Þu2
1�dw1 ¼ 0. ð21Þ

The expression for _w2
1 is extracted from Eq. (21) and the result is substituted into Eq. (20). Then

the following equation is derived:

u001p2fs2ð1þ 3
4

s2Þðw2
1 �W

ðmax Þ2

1 Þ þ ð1
2
þ 3

4
s2ÞðW

ðmax Þ4

1 � w4
1Þg

þ 2u001p2

Z w1

W
ðmaxÞ

1

w1½cð1þ
3
2

s2Þu1 þ ð1�
9
4

s2Þu21�dw1 � p2½�s2ð1þ 3
4

s2Þw1

� cð1þ 3
2 s2Þw1u1 � ð1�

9
4 s2Þu21w1 þ ð1þ

3
2 s2Þw3

1�u
0
1 þ u1 ¼ eḡf�u1 þ

15
4 cs2u2

1

þ cð1
2
þ 3

4
s2Þw2

1 þ ð1�
9
4

s2Þu1w
2
1 þ ð

5
2
� 15

4
s2Þu3

1g þ efgðw1Þ. ð22Þ

A trajectory of the NNM in the form (19) is substituted into Eq. (22) and the dominant terms by e
are retained. As a result the asymptotic equation of the first approximation with respect to � is
derived in the following form:

~u00p2fs2ð1þ 3
4

s2Þðw2
1 �W

ðmax Þ2

1 Þ þ ð1
2
þ 3

4
s2ÞðW

ðmax Þ4

1 � w4
1Þg

� p2½�s2ð1þ 3
4

s2Þw1 þ ð1þ
3
2

s2Þw3
1� ~u
0 þ ~u ¼ ḡcð1

2
þ 3

4
s2Þw2

1 þ fgðw1Þ þOðeÞ. ð23Þ

Two boundary conditions at w1 ¼ �W
ðmaxÞ
1 , which guarantee an analytical continuation of the

trajectory up to the maximum equipotential surface [21,22], are derived from (23)

� p2½�s2ð1þ 3
4

s2ÞW
ðmaxÞ
1 � ð1þ 3

2
s2ÞW

ðmax Þ3

1 � ~u0ð�W
ðmaxÞ
1 Þ þ ~uð�W

ðmaxÞ
1 Þ

¼ ḡcð1
2
þ 3

4
s2ÞW

ðmax Þ2

1 þ fgð�W
ðmaxÞ
1 Þ. ð24Þ

The following series is obtained from Eqs. (10) and (19):

~u ¼ a0 þ a1W
ðmaxÞ
1 cosjþ a2W

ðmax Þ2

1 cos2jþ � � � . (25)
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Series (25) is substituted into Eq. (23) and the coefficients of cos0j; cos1 j; cos2 j are equated.
As a result three linear algebraic equations with respect to five variables a0; . . . ; a4 are derived.
Two additional linear algebraic equations are obtained from boundary conditions (24). Thus
the system of five linear algebraic equations is obtained. The solution of this system is the
following:

a0 ¼ �
m̄cL3L4

36½ð4s2 þ p�2ÞL3 þ L4�
; a1 ¼ f

L2

L1
,

a2 ¼ m̄c
ð2þ 3s2ÞL3

4½ð4s2 þ p�2ÞL3 þ L4�
; a3 ¼

f

L5
A1 þ A3 �

L2

L1
ðW
ðmaxÞ
1 þ p2wÞ

� �
,

a4 ¼
3ḡcð1þ 3s2Þ

2½ð4s2 þ p�2ÞL3 þ L4�
, (26)

where

L1 ¼ ð1þ 7p2s2ÞW
ðmaxÞ
1 þ 3wp2ð1þ 3p2s2Þ � 6p2W

ðmax Þ2

1 ðW
ðmaxÞ
1 þ p2wÞð1

2
þ 3

4
s2Þ,

L2 ¼ ðA1 � 3A3Þ 1þ
3wp2

W
ðmaxÞ
1

 !
� 6p2ðA1 þ A3Þ½�s2 þ ð1

2
þ 3

4
s2ÞW

ðmax Þ2

1 �,

L3 ¼ 1þ 16p2s2 � p2W
ðmax Þ2

1 ð10þ 15s2Þ,

L4 ¼ 12p2W
ðmax Þ2

1 ð3þ 9
2

s2Þ½ð1
2
þ 3

4
s2ÞW

ðmax Þ2

1 � s2�,

L5 ¼W
ðmax Þ3

1 þ p2w3W
ðmax Þ2

1 ; w ¼ s2W
ðmaxÞ
1 � ð1þ 3

2
s2ÞW

ðmax Þ3

1 .

Now nonlinear normal vibrations mode (19) and (26) is considered for the following system
parameters: g ¼ m ¼ e ¼ 0:01;j ¼ 0:15; f ¼ 0:05;o ¼ 0:2033;W ðmaxÞ

1 ¼ 0:3. Fig. 4a shows the
NNM trajectory in the configuration space. We can see that this motion has significant amplitudes
of the snap-through absorber and small amplitudes of the main linear subsystem.
Numerical simulations of System (5) were carried out to compare the analytical results and

simulations at the different values of the system parameters. System (5) is integrated by the
Runge–Kutta method. The initial conditions of NNM (19) are taken for the calculations:

u1ð0Þ ¼ � ~uðW
ðmaxÞ
1 Þ; _u1ð0Þ ¼ 0; w1ð0Þ ¼W

ðmaxÞ
1 ; _w1ð0Þ ¼ 0. (27)

Fig. 4b shows the results of the numerical integration in the configuration space. Figs. 5 and 6
show the nonlinear normal modes obtained analytically and numerically at o ¼ 0:304595 and
0:333166. Fig. 7a and b show the time histories of the nonlinear normal vibrations mode obtained
analytically and numerically at o ¼ 0:333166. As follows from the calculations, the analytical
results are close to the data of the simulations. Simulations (Figs. 4b, 5b, 6b) do not show a simple
nonlinear modal curve, but show the quasi-periodic trajectory which is generally near the
predicted nonlinear mode curve. It appears that this is due to the fact that the predicted initial
conditions are only approximate, and lead to quasi-periodic response, whereas if one knew the
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Fig. 4. The forced nonlinear normal vibrations mode at o ¼ 0:2033;W ðmaxÞ
1 ¼ 0:3: (a) the nonlinear normal vibration

mode, which is calculated by formulae (19) and (26); (b) results of the numerical calculation.
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nonlinear modal initial conditions more precisely, the normal mode curve would be followed more
exactly.
The analytical results are used to analyze the frequency response, which is the dependence of

the amplitude of the first harmonics on o:

ASðoÞ ¼ �ða1W
ðmaxÞ
1 þ 3

4
a3W

ðmax Þ3

1 Þ. (28)

Fig. 8 shows the frequency response, which has two resonance regions.
Nonlinear normal vibrations mode (19) has small amplitudes of u1: u1 ¼ Oð�Þ. Therefore, the

first approximation with respect to e of Eq. (5a) is linear and the frequency response is similar to a
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Fig. 5. The forced nonlinear normal vibrations mode at o ¼ 0:304595;W ðmaxÞ
1 ¼ 0:4: (a) the nonlinear normal vibration

mode, which is calculated by formulae (19) and (26): (b) results of the numerical calculation.
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linear one. The first approximation of Eq. (5b) describes free oscillations of the snap-
through truss. Fig. 9 shows the backbone curve of these oscillations. The backbone curve
starts at a non-zero point since it corresponds to the snap-through motions only, which begin at
non-zero amplitudes. The second approximation of frequency response (28) has bending.
However, the first approximation is enough to study a principal possibility of vibrations
absorption.
Due to nonlinearity of the snap-through absorber, two resonances corresponding to the

nonlinear normal vibrations mode (19) take place in system (5) (see Fig. 8). To treat this
conclusion let us consider the main subsystem with linear absorber (Fig. 10). Then only one
resonance of motions u1 ¼ e ~uðw1Þ takes place. The second resonance in the two-dof linear system
has motions, which essentially differ from the mode u1 ¼ e ~uðw1Þ.
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Fig. 6. The forced nonlinear normal vibrations mode at o ¼ 0:333166;W ðmaxÞ
1 ¼ 0:43: (a) the nonlinear normal

vibration mode, which is calculated by formulae (19) and (26); (b) results of the numerical calculation.
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The locations of the resonances of the nonlinear system (Fig. 1) make possible to absorb
the dangerous oscillations of the main linear subsystem. Moreover, the advantage of the
snap-through absorber is that the vibrations absorption mode exists in a wide frequency
range.
Now the results of numerical analysis of the vibrations absorption mode in damped system

(2) are presented. System (2) is integrated with the above-presented parameters and
b1 ¼ 0:1; b2 ¼ 0:001; f ¼ 1;o ¼ 0:65. The initial conditions are taken from the obtained
analytically vibrations absorption mode (26) and (19). Fig. 11 shows the results of the numerical
simulations, which demonstrate the existence of the vibration absorption mode in the damped
system when the amplitudes of vibrations of the linear subsystems are small and the snap-through
absorber jumps through three equilibrium positions.
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Fig. 7. Time history of oscillations at o ¼ 0:333166: (a) analytical results; (b) data of numerical simulations of

system (5).
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Let us compare the efficiency of the linear and the snap-through absorber. One considers
horizontal vibrations of the two-dof system, which consists of the single-dof linear oscillator with
a big mass and a linear absorber attached to this mass (Fig. 10). External periodic force �f cosðotÞ

acts on big mass M. The stiffness of the spring and mass of the linear absorber are equal to the
corresponding parameters of the snap-through truss. The system parameters are taken
dimensionless: c1 ¼ 1;M ¼ 1; ~c ¼ eḡ;m ¼ em̄. The oscillations amplitudes of the main mass a1

can be determined in the following form [1]:

a1 ¼ ef
1� ðo2=o2

aÞ

ð1� ðo2=o2
aÞÞð1þ eḡ� o2Þ þ eḡ

, (29)

where o2
a ¼ ḡ=m̄. Fig. 12 shows the frequency response a1ðoÞ. Thus, in the system with the linear

absorber the resonances take place at o � 0:92 and 1:04 (Fig. 12). These frequencies are close to
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Fig. 8. The frequency response of the main linear subsystem forced oscillations.

Fig. 9. The backbone curve of the snap-through truss oscillations.

Fig. 10. The system with linear absorber.
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o ¼ 1, when the resonance in the main system without absorber occurs. Therefore, the linear
absorber with the considered parameters is not effective. We stress that for the chosen parameters
there are not resonances in the system with the snap-through absorber at frequency range
o 2 ½0:55; 1:1�. Therefore, the snap-through absorber is effective.
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Fig. 11. The time history of vibration absorption mode of the damped system: (a) the time history of the general

coordinate of the main linear subsystem; (b) the time history of the general coordinate of the snap-through absorber.
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4. Stability of the vibrations absorption mode

Expression (19) is substituted into system (5) to study a stability of nonlinear normal vibrations
mode. Then the following system is obtained:

€~uþ ~u ¼ ḡcð1
2
þ 3

4
s2Þw2

1 þ f cosðotÞ þ �ḡ½� ~uþ ð1� 9
4

s2Þ ~uw2
1� þOð�2Þ, (30a)

€w1 þ p2w1½�s2ð1þ 3
4

s2Þ þ ð1þ 3
2

s2Þw2
1� þOð�Þ ¼ 0. (30b)
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Fig. 12. The frequency response of the system with linear absorber.
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Eq. (30b) is u1-independent within the terms of order � and Eq. (30b) has analytical solutions
(10). To study stability of periodic solutions, Eq. (30a) is considered. Then the equation
with respect to small deviations xðtÞ from the periodic motions is derived in the following
form:

€xþ x½1þ eḡ� eḡw2
1ðtÞ� ¼ 0. (31)

Using the Fourier series for cn2ð2Kot=pÞ, Eq. (31) can be written as

€xþ x 1� eO1 � ew
X1
n¼1

nqn

1� q2n
cosð2notÞ

" #
¼ 0, (32)

where

w ¼ ḡW ðmax Þ2

1 2p2K�2k�2; q ¼ exp �
pK 0

K

� �
,

O1 ¼ ḡ½W ðmax Þ2

1 K�1k�2ðE � k0
2
KÞ � 1�.

Let us consider the set of parametric resonances:

o ¼
1

r
þ e

s
r
; r ¼ 1; 2; . . . , (33)

where s is the detuning parameter. The multiple scales method is used to analyze Eq. (32).
Solutions of this equation are presented as

x ¼ x0ðT0;T1; . . .Þ þ ex1ðT0;T1; . . .Þ þ � � � , (34)
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where T0 ¼ t;T1 ¼ et . . . : Expansion (34) is substituted into Eq. (32) and the terms of the same
orders of e are collected. As a result, the next equations are derived:

x0 ¼ AðT1Þ expðiT0Þ þ ĀðT1Þ expð�iT0Þ,

q2x1
qT2

0

þ x1 ¼ �2
q2x0

qT0qT1
þ O1x0 þ wx0

X1
n¼1

nqn

1� q2n cosð2notÞ. (35)

Excluding the secular terms from Eq. (35) and using the change of the variables A ¼ ða=2Þ expðicÞ,
the following system of modulation equations is obtained:

a0 ¼ ~gra sinð2sT1 � 2cÞ; c0 ¼ �
O1

2
� ~gr cosð2sT1 � 2cÞ, (36)

where ~gr ¼ wqrr=ð2ð1� q2rÞÞ. System (36) is rewritten with respect to Cartesian coordinates
ðx; yÞ ¼ abcosðsT1 � cÞ; sinðsT1 � cÞc:

x0 ¼ ~gr �
O1

2
� s

� �
y; y0 ¼ ~gr þ

O1

2
þ s

� �
x. (37)

As follows from (37), boundaries of unstable regions are described by two equations:

~gr ¼
O1

2
þ s; ~gr ¼ �

O1

2
� s. (38)

Two values s1;2, which are derived from Eqs. (38) and (33), determine the boundaries of the
unstable oscillations on the frequency response (Fig. 8). These values can be calculated from the
equations:

s1;2 ¼ �
2m̄

rshðrpK 0=KÞ
þ

ḡ
2
�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W
ðmax Þ2

1 � s2
q

E

rpp
þW

ðmax Þ2

1 þ 1

0
@

1
A. (39)

Note that the next equation connects x to the variables of system (37):

x ¼ x cosðrotÞ þ y sinðrotÞ þOðeÞ. (40)

Let us consider the instability region close to the first resonance (r ¼ 1; o � 1). In this case
system (5) oscillations with period T ¼ 2p=o become unstable and the new motions of the same
order arise. Now the numerical analysis of this resonance region is performed. Let us take the
system parameters from the previous section and o � 1;W ðmaxÞ

1 ¼ 1:185. Then the unstable
oscillations are observed in the frequency range o 2 ½1; 1:0003�. It is important that this range is
very narrow. The other unstable regions (33) (r ¼ 2; 3; . . .) are smaller than the first one, as the
amplitudes of the higher harmonics in Eq. (32) are decreased when the index n is increased.
5. Conclusion

It is determined in this paper that in the two-dof discrete system with the snap-through
absorber, the absorption mode exists in the form of the nonlinear normal vibrations mode. Using
the combination of the nonlinear normal vibrations mode approach, the Rauscher method and
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asymptotic analysis, the absorption mode is derived analytically. The numerical results presented
here verify the reliability of the analytical analysis. It is established that significant oscillations
amplitudes of the main mass in the system with the snap-through absorber are not observed in the
resonance frequency range of the main linear subsystem without the absorber. The stability of the
vibration absorption mode is considered. The analysis shows that the vibration absorption mode
is stable.
The snap-through absorber is compared with the linear one. The mass and stiffness of the linear

absorber are suggested to be equal to the corresponding parameters of the snap-through truss.
The calculations show that resonance oscillations in the main subsystem are not successful in
absorbing by means of the linear absorber, but the snap-through absorber leads to small
oscillations amplitudes of the main subsystem in the wide frequency range. Thus, the advantage of
the snap-through absorber is that it works over a wide frequency range.
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